江门信息港

当前位置: 首页 >养生

季向东自述追踪质子自旋之谜三十年费曼季向

来源: 作者: 2018-10-11 18:52:41

蒙古熟羊肉樱桃苗求购实验台厂家

来源:知识分子公众号

质子自旋之谜究竟会被谁解开?图片来源:Brookhaven National Laboratory质子自旋之谜究竟会被谁解开?图片来源:Brookhaven National Laboratory

撰文 | 季向东(上海交通大学鸿文讲席教授、中国PandaX暗物质实验合作组负责人)

责编 | 吕浩然

12月21号的下午,上海交通大学的暗物质研究小组在开会,我的好朋友给我打来电话,“你们的暗物质成果被美国物理学会在线刊物《物理》(《physics》)选为2017年的八大亮点成果报道了。”[1]当时我并没有非常在意。PandaX团队今年取得的暗物质直接探测的结果是的,被选为亮点成果也就并不意外了。

会议结束后,合作组的同事在《物理》的网站上找到了这条新闻。我看了一眼,却马上被八大亮点中的另一个成果吸引住了——“胶子提供了质子一半的自旋。”[2]这是我的朋友,美国肯塔基大学刘克非教授带领的研究小组和我过去的博士生赵勇(现为麻省理工学院博士后)做出的大型数值模拟量子色动力学(QCD)的成果。

这个成果虽然在计算精度方面还需要进一步改善,但这仍是近半个世纪以来高能质子结构理论计算在正确的方向上迈出的初始一小步,值得庆祝。

特别让我感慨的是,这个成果的背后与我近四十年的物理人生也有着密切的关系。

大学里的梦想

1978年是我非常幸运的一年,我作为一个地道的农村孩子应届考上了大学。我在高中时深圳废品回收公司,数学成绩非常,曾得过全县数学竞赛的。但考大学时我把数学考砸了,不过物理却拿了高分。因此我终被同济大学海洋系录取,学习海洋地球物理勘探专业。很多年后,我才明白,这就是专门在海底寻找石油等资源。

刚进大学还没有专业课,我们主要学习数学和物理基础课。我对物理课有特别的兴趣,也被老师注意到了。当时同济有位非常的物理老师建议我和研究生一起听课,并参加考试。课程结束后,老师就直接拿着我的考卷去找当时的李国豪校长。在校长的直接安排下,我在二年级时从海洋系转到了物理系。我一直非常感激这位老师的帮助使我有机会终身从事物理研究,而不是去海里找石油。这种转系在当时是非常罕见的,我愉快地正式开始了我的物理生涯。

转到物理系后,因为我的数学功底比较好,理论力学、电动力学、量子力学等课程学起来也比较轻松。特别是量子力学,看上去基本都是一些数学题,不需要搞清其中的物理意义就能拿高分。但唯有一门功课是例外,就是热力学与统计物理。

这是一门研究日常生活中冷与热的学科,涉及到温度、能量守恒定律、热功转换效率、相变等,其研究成果直接推动了蒸汽机的应用与次工业革命。

热力学是一门非常优美的经验学科,而统计物理则是用微观的分子热运动去解释热力学的定律。当时课堂里流行用的是北京大学王竹溪先生写的两本教材。令人沮丧的是,统计物理的书虽然看懂了,但习题却非常难解。原来统计物理研究的是几乎无穷多个(1023)粒子的力学系统,光数学好没有用。必须弄清其中重要的物理机制才能找到合适的数学方法去进行近似求解。

1982年大学毕业前要报考研究生,我二话没说就报了北京大学王竹溪先生的研究生。我的理由非常简单:,北大是当时中国物理学强、物理学子向往的地方;第二,去学难的东西才能挑战自己。王先生既然能写这样的教科书,那他应该是我能找到的的老师了!那是一个非常幸运的春天,我报考北大物理研究生被顺利录取了。

好消息与坏消息

1982年秋,我进入北大开始学习高等物理课程,包括量子统计物理。教这门课的老师刚从国外访问回来,讲得异常生动。有一天他上课时宣布,今年的诺贝尔物理学奖颁发给了美国康内尔大学理论物理学家威尔森(Kenneth Wilson)教授,以表彰他对物质相变有关的临界现象所作出的理论贡献。这是在物理学史上少有的颁发给统计物理的诺奖,而且是一人独得松下蓄电池。我当时真的非常兴奋,觉得选对了学习方向。而以前从未听说过的威尔森先生,一下成了我心目中的大英雄,我马上开始学习他的诺奖成果。

威尔森(中)与汉斯·贝特(右,Hans Bethe,1967年诺贝尔物理学奖获得者)、博伊斯?麦克丹尼尔(左,Boyce McDaniel,康奈尔大学实验物理学家)一起庆祝威尔森斩获1982年诺贝尔物理学奖,图片来源: Cornell-LEPP Laboratory。威尔森(中)与汉斯·贝特(右,Hans Bethe,1967年诺贝尔物理学奖获得者)、博伊斯?麦克丹尼尔(左,Boyce McDaniel,康奈尔大学实验物理学家)一起庆祝威尔森斩获1982年诺贝尔物理学奖,图片来源: Cornell-LEPP Laboratory。

热力学研究的一个重要课题是物质在不同温度下的状态,也叫作相。比如水在常温下是液体,到了摄氏零度就会凝成固态的冰,在摄氏100度高温下就会气化成水蒸汽,这就是水的三相。

在一定的物理条件下,比如一个固定的温度,水和蒸汽在一个密封的玻璃容器内会以两相共同存在,对应的气压就叫做饱和蒸汽压。随着温度的上升,水不断增发变成水蒸汽,饱和蒸汽压也不断上升。到了一定的温度,水和蒸汽再也无法区分,整个玻璃容器变成白色一片,这就是所谓的临界现象。虽然统计力学的始祖们如玻尔兹曼(Ludwig Boltzmann)早就写下数学方程从理论上来研究这个问题,但由于数学上太难,这个问题一直无法理论求解。

临界点示意图,图片来源:Wikipedia临界点示意图,图片来源:Wikipedia

临界现象之所以是个统计物理的世纪难题,是因为在这个体系里,所有的粒子都在强烈地相互关联、影响着,单个粒子的行为变得不再重要。这好象一个大城市里的每个居民在手机上不停地和所有其他人同时相互联络,整体的行为无法从个体来进行判断。

这在数学上对应的是一个热力学函数的奇点,在物理中叫作临界点。理论物理学家对研究多粒子系统中的由单个粒子运动主导的物理现象非常在行,比如多电子的原子结构或金属中的电子气体可以轻松用单电子近似解决。但当所有粒子之间相互影响太大,类似临界现象,基本就束手无策了。

当威尔森开始研究临界现象的时候,其他物理学家已经发现,虽然临界现象非常复杂,但其中也会出现一些简单的行为,称作“自相似”行为。在前述市民打电话这个例子里,我们可以把市民分成5人一小组,然后研究小组与小组之间的交流和影响。在临界点问题上,小组与小组之间交流的效果和个人与个人之间的直接沟通是类似的。接着我们可以把5个5人小组划为一个大组,在临界点时,大组与大组之间的交流效果和小组与小组之间的沟通情况是一样的。在临界点附近,不同条件下的物理系统是通过这个自相似行为相互关联着的,专业上叫做标度关系。

威尔森敏锐地认识到,这种自相似行为是一种数学上的对称性。而这种对称性在“量子场论”的研究中曾经出现过,物理学家称之为“重整化群”的不动点。在数学领域,研究对称性的学问叫做“群论”,重整化群就是由所有自相似变换而组成的集合大棚管。量子场论系一种由量子力学与爱因斯坦的相对论完美结合而产生的物理学形式理论。威尔森的博士的导师——美国的粒子物理学家及诺贝尔奖获得者盖尔曼(Murray Gell-Mann),也是量子场论中重整化群的发明人之一。

默里·盖尔曼,图片来源:magazine.seymourprojects.com默里·盖尔曼,图片来源:magazine.seymourprojects.com

威尔森在六十年代后期在量子场论的重整化群方面作出了开创性的贡献。当他在1971年左右接触到临界现象时,马上运用到了量子场论中。他能用重整化群的手法,如同变魔术一般精确地算出临界点附近的物理系统是如何关联的(所谓的临界指数)。许多之前无法计算的问题也就迎刃而解了,这让统计物理学家们目瞪口呆却又兴奋不已。一时间,这个场论中非常抽象的方法成为凝聚态理论物理学家必备的新工具。十年后,粒子理论物理学家威尔森在统计物理领域里因“串角”而赢得诺奖,却也实至名归。

当知道这些故事之后,我就如饥似渴地去自学重整化群方法,以期能解决统计物理中尚未解决的重要问题。我同时向物理系要求面见导师王竹溪先生。秘书告诉我王先生生病住院,不太方便。 到了1983年1月底,我被告知王先生在医院去世,心中悲痛而又极度失落。这位激发我走上学习统计物理之路的心目中的导师,我始终未能见上一面。

王先生去世后,北大物理系计划把我分给在北大兼职的中科院理论物理研究所苏肇冰先生。当时苏先生参与国防研究,刚刚回到理论研究不久,我对他的事迹一无所知,只知道他对统计物理是有研究的,就同意了。后来才知道他是国内外有名的凝聚态理论家。我师从苏先生的时间不长,83年7月我就通过李政道先生的中美物理学联合招生考试(CUSPEA)赴美国读研。

转行理论核物理

我到美国读研的地方是费城的德雷塞尔大学(Drexel University),物理系很小,研究方向也不多。我铁了心要研究统计物理,但道路却是非常的曲折。

我先找的一位导师对统计物理,特别是相变和临界现象有些研究,还写了一本相关的参考书。但他显然对这个刚来美国学习的研究生期望太高。他每天给我一篇新的论文看,但没有我感兴趣的重整化群方面的内容。头天的中南新壹街碧海尚城苕溪壹号

相关推荐